博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Bitmap 算法
阅读量:5126 次
发布时间:2019-06-13

本文共 912 字,大约阅读时间需要 3 分钟。

位图算法,内存中连续的二进制位bit,用于对大量整型数据做去重和查询。

举个例子,给定一块长度是10bit的内存空间,依次插入4,3,2,1,怎么存储?

1. 给定长度是10的bitmap,每一个bit位分别对应着从0到9的10个整型数。此时bitmap的所有位都是0。

2. 把整型数4存入bitmap,对应存储的位置就是下标为4的位置,将此bit置为1。

3. 把整型数2存入bitmap,对应存储的位置就是下标为2的位置,将此bit置为1。

4. 把整型数1存入bitmap,对应存储的位置就是下标为1的位置,将此bit置为1。

5. 把整型数3存入bitmap,对应存储的位置就是下标为3的位置,将此bit置为1。

Bitmap不仅方便查询,还可以去除掉重复的整型数。

使用场景:

开发一个用户画像系统,实现用户信息的标签化。用户标签包含用户的社会属性,生活习惯,消费行为。

通过用户标签,实现多样的用户群体统计,统计用户的男女比例,统计喜欢旅游的用户数量等。

1. 建立用户名和用户ID的映射:  1->me   2->you  3->he

2.让每一个标签存储包含此标签的所有用户ID,每一个标签都是一个独立的Bitmap。

男[1,2]   女[3] 爱旅游[2]  程序员[1,2]

3. 这样,实现用户的去重和查询统计,就变得一目了然:

Bitmap在做交集和并集运算的时候也有极大的便利。位运算的高性能。

男性的程序员  110&110=110

不能做非运算,并不是除了1,2的其他都是女性,其实只有3是女性。除非提供一个全量的Bitmap,做异或即可。

一个很长的Bitmap里使用率低的话很浪费空间。

谷歌所实现的EWAHCompressedBitmap中,对存储空间做了优化:

com.googlecode.javaewah
JavaEWAH
1.1.0

  

 

转载于:https://www.cnblogs.com/wade-luffy/p/7718579.html

你可能感兴趣的文章
HTML元素定义 ID,Class,Style的优先级
查看>>
构造者模式
查看>>
http和https的区别
查看>>
Hbuild在线云ios打包失败,提示BuildConfigure Failed 31013 App Store 图标 未找到 解决方法...
查看>>
找到树中指定id的所有父节点
查看>>
今天新开通了博客
查看>>
AS3优化性能笔记二
查看>>
ElasticSearch(站内搜索)
查看>>
4----COM:a Generative Model for group recommendation(组推荐的一种生成模型)
查看>>
UVA 11137 - Ingenuous Cubrency
查看>>
js阻止事件冒泡的两种方法
查看>>
Java异常抛出
查看>>
[SQL Server 系] T-SQL数据库的创建与修改
查看>>
74HC164应用
查看>>
变量声明和定义的关系
查看>>
Wpf 之Canvas介绍
查看>>
linux history
查看>>
jQuery on(),live(),trigger()
查看>>
Python2.7 urlparse
查看>>
sencha touch在华为emotion ui 2.0自带浏览器中圆角溢出的bug
查看>>